Gas Stoves and Indoor Air Quality – Fresh Air on a Hot Topic

by Sandhya Sethuraman and Maria A. di Landro

gas stove
Emissions from gas stoves cause poor indoor air quality and health problems

Urged by scientists’ findings on the links between gas stove use and their contribution to indoor pollution and increased risk of respiratory illnesses, the CPSC (Consumer Product Safety Commission) has recently begun to consider a ban on gas stoves. More than 40 million U.S. households rely on gas stoves to cook with, but many are not aware of their negative impacts on indoor air quality and climate: natural gas appliances release nitrogen oxides, particulate matter, formaldehyde, and carbon dioxide into the air, and they can leak methane, even when not in use. Higher indoor pollution levels, as a consequence of gas stove emissions, can have various respiratory impacts, including asthma, coughing, wheezing, and difficulty breathing. In this article, we provide more details on what academic research has found, including the estimated fraction of current childhood asthma associated with gas-stove use in each state. We also discuss how various states are already taking initiative and are working to move away from new gas stove installation. Using New York as a case study, this article describes their new bill that effectively bans the use of gas stoves in the construction of new buildings starting in 2024 and what the response from the public has been. In the meantime, there are various measures the public can take to protect themselves from gas stove emissions.

What’s the controversy?

A torrent of information, data, and dissent followed the initial CPSC announcement — scientists urged reform while political parties made the debate about consumers’ freedoms. To make some sense of the dialog: 

  • In December, Senator Cory Booker (D-NY) and Representative Don Beyer (D-VA) published a report strongly urging the CPSC to consider a ban on gas stoves. They argued that gas stoves emit high levels of pollutants like nitrogen dioxide (NO2), carbon monoxide (CO) and fine particulate matter (PM2.5). 
  • Amid debates surrounding gas stoves, consultants with ties to the American Gas Association have criticized research which linked gas stoves to childhood asthma.
  • Voices on the right have argued that removing gas stoves from homes is an infringement on their basic rights. Senators Cruz and Manchin introduced legislation in early February to bar the CPSC from using federal funding to ban gas stoves, arguing that it “constitutes government overreach.” 
  • The American Gas Association also pushed back against the ban, arguing that housing would become more expensive as “electric homes require expensive retrofits.”

The resulting debate became clear: ban gas stoves in future buildings and transition to electric stoves instead, or continue as we always have? 

What’s happening right now? (NYC Case Study)

Currently, over 70 percent of greenhouse gas emissions in New York City comes from indoor air pollution in homes, but changing the internal piping and structures of old New York City buildings (retrofitting) is nearly impossible. Because many buildings went up before 1930, ripping out the existing infrastructure and effectively transitioning to more efficient and sustainable energy has proven to be a daunting task. 

In December 2021, New York’s City Council voted to ban the use of fossil fuels — and by extension gas stoves — altogether in new buildings. This law was scheduled to go into effect this year for structures shorter than seven-stories tall and in 2027 for all buildings. As of late, the council has asserted that co-ops and condominiums — newer, more modern buildings — are poised to make a difference in the short term if they make the necessary electrical upgrades and incentivize resident collaboration. 

Why gas stoves?

Simply put, gas stoves have gained attention because of how ubiquitous they are. Over one third of U.S. households — more than 40 million homes — cook with gas stoves. Natural gas appliances generate carbon dioxide, particulate matter, formaldehyde, and nitrogen oxides when natural gas is burned as a fuel, and leak methane into the air, often even when they are not in use. 

According to researchers at Stanford, gas stoves themselves have the same climate impact as about 500,000 gasoline-powered cars. Current EPA estimates are incomplete themselves, failing to account for the reality of gas pipelines (which leak much more than reported), and usually not including leakage within buildings at all. 

Additionally, the health impacts of having stoves in such close proximity to residents is well-understood. Because they are often central to homes, the respiratory impacts of pollutants — like asthma, coughing, wheezing and difficulty breathing — are often difficult to control and treat. People interact directly with their stoves (more so than other gas appliances), and the constant exposure to formaldehyde, carbon dioxide, nitrogen oxides, and methane can have long term health effects. 

The impacts of gas stoves are not equal either. As emphasized by Booker and Beyer, gas stoves have a larger impact on Black, Latino and low income households, who experience the “cumulative burden” of gas stove emissions and broader air quality impacts every day. In the global south, poor ventilation and living conditions mean that women and children are also disproportionately affected by indoor household emissions. 

What does the academic research say?

The push to “go electric” is backed by science, as the harmful byproducts of combustion are often emitted directly into the air indoors without proper ventilation systems in place. Indoor gas stove cooking is clearly connected to respiratory illness, and more than 12% of childhood asthma cases in the U.S. can be linked to gas stoves. 

A few key results: 

  • State-by-state differences in pollution levels from gas stoves, and therefore impacts, are correlated with their prevalence in the household, which means that a one-size-fits-all solution via blanket legislation is likely to fail. For example, Illinois experiences the highest childhood asthma burden from gas stoves (21.1%), followed by California (20.1%), New York (18.8%), Massachusetts (15.4%), and Pennsylvania (13.5%). Florida, where the demand for gas stoves is low, has the lowest burden (3%) (U.S. Energy Information Administration, via CNN).
  • There are existing benchmarks for “unsafe” pollution and residential exposure limits. For instance, Canada has a maximum residential exposure limit of 90 parts per billion (ppb) over an hour of exposure, and 11 ppb in the long term (> 24 hours) for NO2.
  • Gas stoves contribute different amounts of methane to the atmosphere based on when and how they are being used. A recent study published in Environmental Science & Technology found that 76% of the total methane emissions from stoves come from the steady-state off state (indicating significant leakage). 
Population attributable fraction of current childhood asthma associated with gas stove use in the U.S. From Gruenwald et al., Int. J. Environ. Res. Public Health 202320(1), 75; https://doi.org/10.3390/ijerph20010075

What can you do?

  • Ventilate: exhaust streams are necessary in any kitchen; turning on a fan or opening a window is a good way to mitigate some of the negative effects of cooking on a gas stove. Many range exhausts don’t vent to the outside, but rather recirculate stove emissions back into the kitchen. Ventilation to the outside can greatly improve indoor air quality.  
  • Educate: launch education campaigns to better understand the risks associated with gas stoves, and how these can be minimized, especially for disadvantaged groups. 
  • Advocate: push for gas stoves to be sold with range hoods that meet mandatory performance standards, and for ventilation to the outdoors instead of recirculation. Additionally, gas stoves should be equipped with leak proof valves, which can be shut on and off to prevent methane exposure. 

How to protect yourself and your family from air pollution

This article was written by Prof. V. Faye McNeill and her colleague, Dr. Julia Nunes. It gives details on ways to protect yourself and your family from the effects of air pollution. It is the first in a set of articles. The next article in the series will break down air pollution data from across India, demonstrating that most Indians are exposed to unhealthy air for much of the year.

http://m.huffingtonpost.in/amp/dr-julia-k-nunes/no-you-do-not-become-immune-to-air-pollution-yes-it-can-kill-you_a_23241219/

Image: Smog in the Delhi/NCR area. Photo credit: Jesse Rabek.

 

Air quality action day!

It’s hot as the Dickens and it’s an air quality action day in the New York city area and in much of the Northeast. Skies are currently blue but the air quality index is in the ‘Unsafe for Sensitive Groups’ range. This plus the super hot weather makes for dangerous conditions for asthmatics, the elderly, and other sensitive groups.  So do your best to chill out indoors this weekend!

NYC Air Quality – Improving? AIRE reports!

AII Air Quality NYC - US letter _Page_03ccording to the New York City Department of Health and Mental Hygiene, air quality in NYC is getting better.  Here at AIRE, we hypothesized the opposite last summer.  Based on a very unscientific survey of our own asthma responses and perceptions of visibility in the city, we suspected that summertime air quality had been on the decline in recent years (2014-2015).  To test this hypothesis, summer undergraduate researcher Silvia Vina Lopez gathered Air Quality Index (AQI) data for NYC from 2000-2015, and data on criteria pollutant (SO2, CO, NO2, O3, PM) concentrations from 9 NYSDEC monitoring sites around the five boroughs. Here are some highlights of her findings:

  • Overall, air quality has been improving since 2000.  Importantly, there has clearly been a steady decrease in the number of “bad air days”. Since 2000, the number of days categorized as “Unhealthy for sensitive groups,” “Unhealthy,” or “Very unhealthy” has been on the decline.
  • Since 2008, the number of “Good” air quality days has had an overall upward trend, but there indeed has been a sharp decrease in “Good” days since 2013.  Since “Moderate” air quality is also pretty good in the big scheme of things, this trend may be subtle to perceive as you’re walking the streets of NYC unless you have asthma (like us) or think about PM 2.5 a lot (also like us).

II Air Quality NYC - US letter _Page_04To dig deeper into these trends, Silvia investigated the frequency with which each criteria pollutant exceeded the 24 h NAAQS standards. She found that SO2 violations decreased between 2004-2009 and have stayed low. The City attributes this trend to changes in heating oil regulations. On the other hand, the frequency of PM2.5 violations increased over the same time period and has remained elevated since 2009. This value decreased somewhat between 2007-2015, consistent with the data presented in the City’s survey, which covered 2008-2014. However, the average number of PM2.5 violations 2009-2015 was still significantly higher than 2000-2005.

The verdict: air quality in NYC is not bad and getting better in general.  However, work needs to be done to reduce PM2.5 violations, and hold on to the gains made between 2008-2014.  One possible source of elevated PM2.5 not mentioned in the City’s report is secondary organic aerosol formation: the formation of PM2.5 in situ, due to gas-phase reactions of oxidants and volatile organic compounds (which can be natural or man-made).

¿Contribuye la contaminación del aire a la obesidad de los niños?

por Silvia Vina Lopez

El proyecto Infancia i Medi Ambient (INMA) en Cataluña está investigando la hipótesis de que las emisiones de los coches propicien la gordura.

Hoy en día, Barcelona supera el nivel máximo permitido de NO2, debido al tráfico, en el aire. Es posible que NO2 es un “interruptor endocrino” que causa un desorden hormonal que hace acumular grasas. Este estudio se centra en la influencia del NO2 en el desarrollo y la salud de los fetos y los niños de corta edad, dado que la contaminación resta capacidad de aprendizaje a los menores.

Los compuestos químicos de las emisiones del tráfico son solubles en grasas lo que facilita que se acumulen con facilidad y permanezcan durante mucho tiempo en el ambiente y las personas. El Centro de Recerca Epidemiológica Ambiental (CREAL) ya demostró que los menores que viven en las zonas más contaminadas sufren de una alteración en la atención y memoria de trabajo.

Más información en el siguiente artículo:

http://www.elperiodico.com/es/noticias/sociedad/ciencia-estudia-polucion-del-trafico-contribuye-obesidad-4435322

Recommended Resource: “What’s Up in the Atmosphere? Exploring Colors in the Sky,” an aerosols storybook from The GLOBE Program

Scientists and educators from NASA and UCAR have written a storybook entitled “What’s Up in the Atmosphere? Exploring Colors in the Sky” aimed at elementary school-aged (K-4) children, in which atmospheric aerosols play a starring role.  The story follows a group of curious students who, under the guidance of their teacher, investigate the connection between the appearance of the sky and asthma symptoms in their fellow students on a given day.  The students in the story (and the readers) learn about atmospheric aerosols in the process.  The storybook includes a teachers’ guide with glossary.

From the mailbag: What are Ozone Action Days and why should we care?

Question: An alert on my smartphone told me today is an Ozone Action Day.  What is that and how does it affect me? – D.E., New York, NY

Answer: An Ozone Action Day is a day when the concentration of ozone gas in a particular area is predicted to be higher than healthy levels. Ozone Action Days generally coincide with high Air Quality Index days.  Ozone is one of the main urban air pollutants that we regulate, due to its potential negative impacts on human health, alone or in combination with other pollutants such as particulate matter.  Ozone can irritate the lungs and cause respiratory symptoms, especially in sensitive groups such as children,  the elderly, and those with respiratory problems such as asthma or COPD.

On Ozone Action Days it is generally a good idea to avoid exercise outdoors if possible.  Children’s outdoor play time should be limited on those days, especially for children with asthma.  You can do your part to help keep ozone levels down on Ozone Action Days by taking measures to reduce your emissions of NOx and volatile organic compounds (VOCs): limit electricity use and use of gasoline vehicles.

From the mailbag: “What are the health effects of pollution on humans?”

Question: What are the health effects of pollution on humans? – L.I., Miami, FL

Answer: Poor air quality primarily affects the cardiovascular and respiratory systems. According to the EPA, exposure to particulate matter and ozone is associated with aggravated asthma, chronic bronchitis, reduced lung function, irregular heartbeat, heart attack, and premature death in people with heart or lung disease. For more information, see this site on the health effects of air pollution, maintained by Health Canada 

Recommended Resource: Aerosol Science & Engineering

In honor of the 2014 Annual meeting of the American Association for Aerosol Research, happening this week in Orlando, FL,  we are very excited to share with you this series of educational modules on the science and engineering of aerosols (airborne particles).

These materials were developed by Profs. Pratim Biswas, of Washington University St. Louis, and C. Y. Wu, of University of Florida, through a collaborative grant from the National Science Foundation. The modules are aimed at an introductory college level, and are excellent for supplementing course materials or learning on your own.

The modules: http://aerosols.wustl.edu/education/

The complete lecture series for an introductory course on Aerosol Science and Technology from WUStL is available FREE through ITunesU!: https://itunes.apple.com/us/course/id691280850

Additional information on this effort, and more resources: http://www.aerosols.wustl.edu/aaqrl/Education/mageep/index.html